22 research outputs found

    Polyglot: Distributed Word Representations for Multilingual NLP

    Full text link
    Distributed word representations (word embeddings) have recently contributed to competitive performance in language modeling and several NLP tasks. In this work, we train word embeddings for more than 100 languages using their corresponding Wikipedias. We quantitatively demonstrate the utility of our word embeddings by using them as the sole features for training a part of speech tagger for a subset of these languages. We find their performance to be competitive with near state-of-art methods in English, Danish and Swedish. Moreover, we investigate the semantic features captured by these embeddings through the proximity of word groupings. We will release these embeddings publicly to help researchers in the development and enhancement of multilingual applications.Comment: 10 pages, 2 figures, Proceedings of Conference on Computational Natural Language Learning CoNLL'201

    Distributed representation of multi-sense words: A loss-driven approach

    Full text link
    Word2Vec's Skip Gram model is the current state-of-the-art approach for estimating the distributed representation of words. However, it assumes a single vector per word, which is not well-suited for representing words that have multiple senses. This work presents LDMI, a new model for estimating distributional representations of words. LDMI relies on the idea that, if a word carries multiple senses, then having a different representation for each of its senses should lead to a lower loss associated with predicting its co-occurring words, as opposed to the case when a single vector representation is used for all the senses. After identifying the multi-sense words, LDMI clusters the occurrences of these words to assign a sense to each occurrence. Experiments on the contextual word similarity task show that LDMI leads to better performance than competing approaches.Comment: PAKDD 2018 Best paper award runner-u

    The Expressive Power of Word Embeddings

    Full text link
    We seek to better understand the difference in quality of the several publicly released embeddings. We propose several tasks that help to distinguish the characteristics of different embeddings. Our evaluation of sentiment polarity and synonym/antonym relations shows that embeddings are able to capture surprisingly nuanced semantics even in the absence of sentence structure. Moreover, benchmarking the embeddings shows great variance in quality and characteristics of the semantics captured by the tested embeddings. Finally, we show the impact of varying the number of dimensions and the resolution of each dimension on the effective useful features captured by the embedding space. Our contributions highlight the importance of embeddings for NLP tasks and the effect of their quality on the final results.Comment: submitted to ICML 2013, Deep Learning for Audio, Speech and Language Processing Workshop. 8 pages, 8 figure

    Character-Level Language Modeling with Deeper Self-Attention

    Full text link
    LSTMs and other RNN variants have shown strong performance on character-level language modeling. These models are typically trained using truncated backpropagation through time, and it is common to assume that their success stems from their ability to remember long-term contexts. In this paper, we show that a deep (64-layer) transformer model with fixed context outperforms RNN variants by a large margin, achieving state of the art on two popular benchmarks: 1.13 bits per character on text8 and 1.06 on enwik8. To get good results at this depth, we show that it is important to add auxiliary losses, both at intermediate network layers and intermediate sequence positions.Comment: 8 pages, 7 figure
    corecore